数学中,集合Z代表“整数集”,表示由全体整数构成的集合。
数学上把若干具有共同属性的事物的总体叫做集合。集合简称集。“集合”在高中数学教材中的定义为:“一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)”。
整数集Z的集合表示
1、整数集表示全体整数构成的集合,常用大写英文字母“Z”来表示整数集。
2、整数集的列举法和描述法的表示方法如下:
(1)列举法:Z={0,±1,±2,±3,±4,±5,……}。
(2)描述法:Z={x|x是整数}。
Z表示集合中的整数集。
整数zhi集由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
扩展资料:
N表示集合中的自然数集。非负整数集是一种特定的集合,指全体自然数的集合,常用符号N表示。非负整数包括正整数和零。非负整数集是一个可列集。
Q表示有理数集。有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集有理数集是一个无穷集,不存在最大值或最小值。
R表示实数集。实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。
N+表示正整数集。全体正整数构成的集合叫做正整数集。
数学中z代表整数集。整数集(The integer set)指的是由全体整数组成的集合。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
正整数和0组成的集合又称为自然数,通常记为N。所有正整数组成的集合称为正整数集,记作N*,Z+或N+。所有负整数组成的集合称为负整数集,记作Z-。
其他数学集合符号:
1、R:实数集合(包括有理数和无理数);
2、R+:正实数集合;
3、R-:负实数集合;
4、Q:有理数集合;
5、Q+:正有理数集合;
6、Q-:负有理数集合;
7、∅:空集(不含有任何元素的集合);
8、C:复数集合。
z是全体整数数集。
整数集(The integer set)指的是由全体整数组成的集合。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。用z表示整数集,这个涉及到一个德国女数学家对环理论的贡献,她叫诺特。
1920年,她已引入“左模”,“右模”的概念。1921年写出的《整环的理想理论》是交换代数发展的里程碑。其中,诺特在引入整数环概念的时候(整数集本身也是一个数环),她是德国人,德语中的整数叫做Zahlen,于是当时她将整数环记作,从那时候起整数集就用z表示了。
数学中一些常用的数集及其记法:
1、所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
2、所有负整数组成的集合称为负整数集,记作Z-。
3、全体非负整数组成的集合称为非负整数集(或自然数集),记作N。
4、全体整数组成的集合称为整数集,记作Z。
5、全体有理数组成的集合称为有理数集,记作Q。
6、全体实数组成的集合称为实数集,记作R。
7、全体虚数组成的集合称为虚数集,记作I。
8、全体实数和虚数组成的复数的集合称为复数集,记作C。
Z表示集合中的整数集。
整数集由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
扩展资料
表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。
列举法列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。
描述法描述法的形式为{代表元素|满足的性质}。
设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}。
图像法图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。
集合z是全体整数的集合,包括正整数、0、负整数,按照新规定,正整数和0组成的集合又称为自然数,通常记为N。集合是数学中一个基本概念,也是集合论的主要研究对象。
集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
发表评论